

The Importance of Geotechnical Engineering Design of Excavated Ponds and Embankments

John M. Siwula, PE, D GE GZA GeoEnvironmental, Inc.

Sand Mine Life Cycle Seminar - May 12, 2017

Proactive By Design. Our Company Commitment

GOALS OF PRESENTATION

1. Define and Illustrate

General Geotechnical Issues Affecting Earthen Surface Tailings Impoundments/Embankments

GOALS OF PRESENTATION

2. Illustrate

General Types and Methods of Tailings Impoundment Structure Construction and Remedial Measures to Address Instability and Seepage

Why are Tailings Impoundments Of Concern?

MSHA Investigations From 1990 through 2010 Failure Of 5 Tailings Structures Cited as a Primary Reason to Develop New Regulations

1990	Puerto Rico	Limestone Mine	100' High
1992	Wisconsin	Andesite Quarry	70' High
1997	Arizona	Copper Mine	Unspecified Height
2002	Georgia	Sand & Gravel Mine	30' High
2007	California	Sand & Gravel Mine	Unspecified Height

Consequences

- Release 200 M gals. water and tailings
- Moderate to Extensive Damages to Operations, Plant, Equipment, Property, Environment
- Several Injuries
- <u>No Loss Of Life</u> most occurred off hours

Primary Factors Affecting Five Mining Failures

1. Lack of Design By a Knowledgeable Engineer, and/or

2. Lack of Understanding of Geotechnical and Dam Engineering Principles

Sand Mine Life Cycle Seminar - May 12, 2017

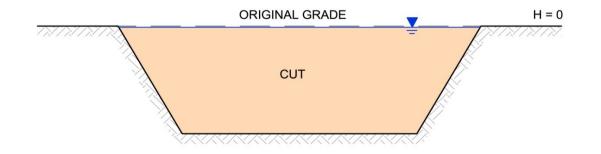
Failure Of Coal Ash Dredge Spoil Cell December, 2008 Harriman, Tennessee

Sand Mine Life Cycle Seminar - May 12, 2017

Harriman, Tennessee - Release of 200,000 Cubic Yards of Stored Coal Ash

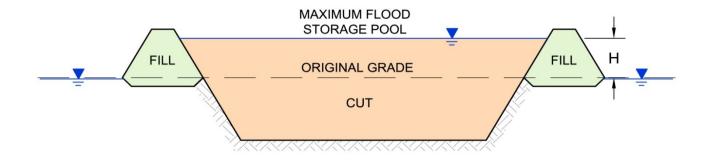
1 Billion Gallons of Flow, Much into Emory River

Alton, New Hampshire 1996 Privately Owned Impoundment Failure


General Types of Impoundments

Sand Mine Life Cycle Seminar - May 12, 2017

INCISED SURFACE IMPOUNDMENT



Sand Mine Life Cycle Seminar - May 12, 2017

PARTIALLY INCISED SURFACE IMPOUNDMENT

Dam Size Classification Corps of Engineers Often Varies by State: But size does not matter per MSHA and Corps

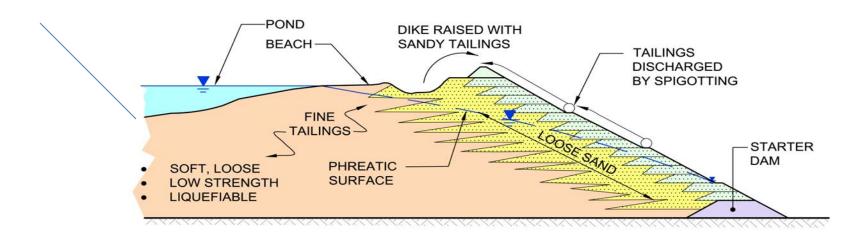
<u>Category</u>	<u>Storage (acre-</u> <u>feet)</u>	<u>Height (feet)</u>
Small	≥ 15 and < 50	≥ 6 and < 15
Intermediate	≥ 50 and < 1,000	≥ 15 and < 40
Large	≥ 1, 000	≥ 40

Typical Dam Hazard Classification (Varies By State)

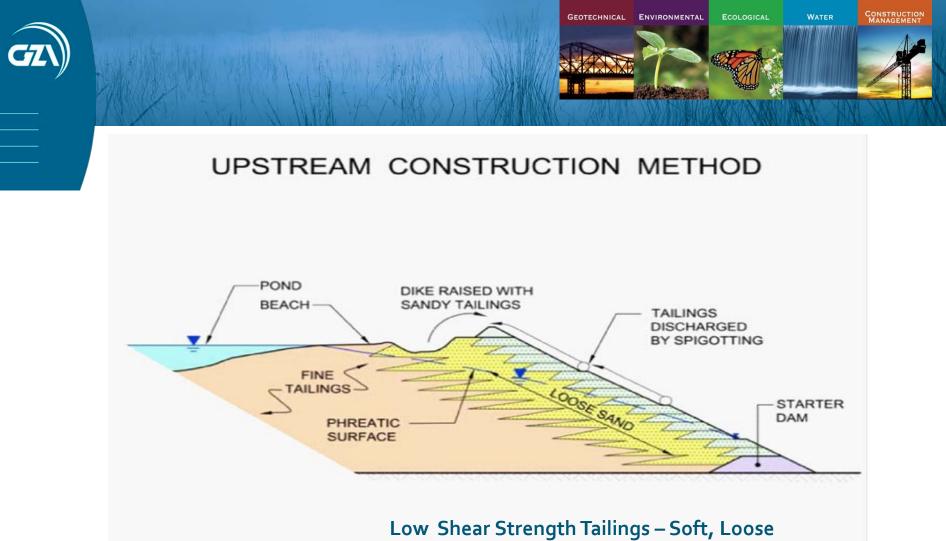
<u>Hazard</u> <u>Classification</u>	Hazard Potential	
High	Probable loss of life Major economic losses	
Significant	Possible loss of life Major economic losses	
Low	Loss of life not expected Minimal property damage	

General Methods Of Construction Tailings Impoundments

Ref. Klohn, E. "Taconite Tailings Disposal Practices", Geotechnical Practices in Mine Waste Disposal, A.S.C.E., New York, NY, 1979, pp 202 – 241.


Depending on the mining operation tailings can consist of a wide range of particle sizes ranging from Sand - 0.075 mm to 4.75 mm Silt – 0.002 mm to 0.075 mm Clay - <0.002 mm

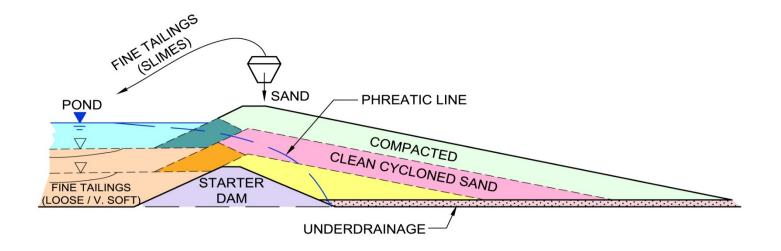
Source AASHHTO



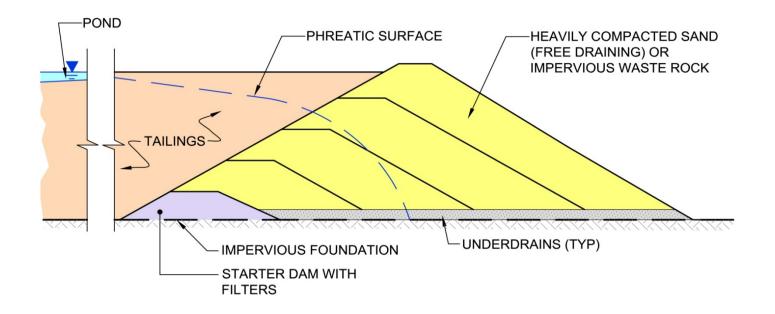
UPSTREAM CONSTRUCTION METHOD

Use of Tailings is practical but it creates stability and seepage concerns

Geotechnical Issues

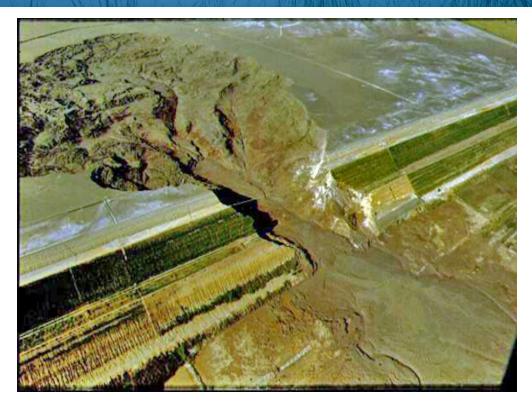

Low Shear Strength Tailings – Soft, Loose No Internal Drainage – High Water Pressures Poor Compaction of Fill Materials Steep Side Slopes Weak Foundation Liquefiable Soils Under Seismic Loads

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION

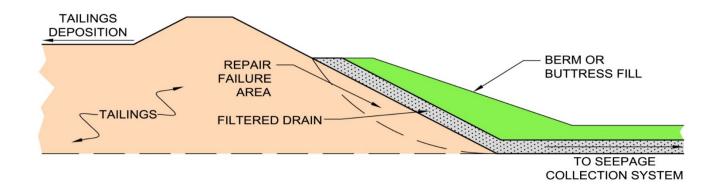

CENTERLINE CONSTRUCTION METHOD

DOWNSTREAM CONSTRUCTION METHOD

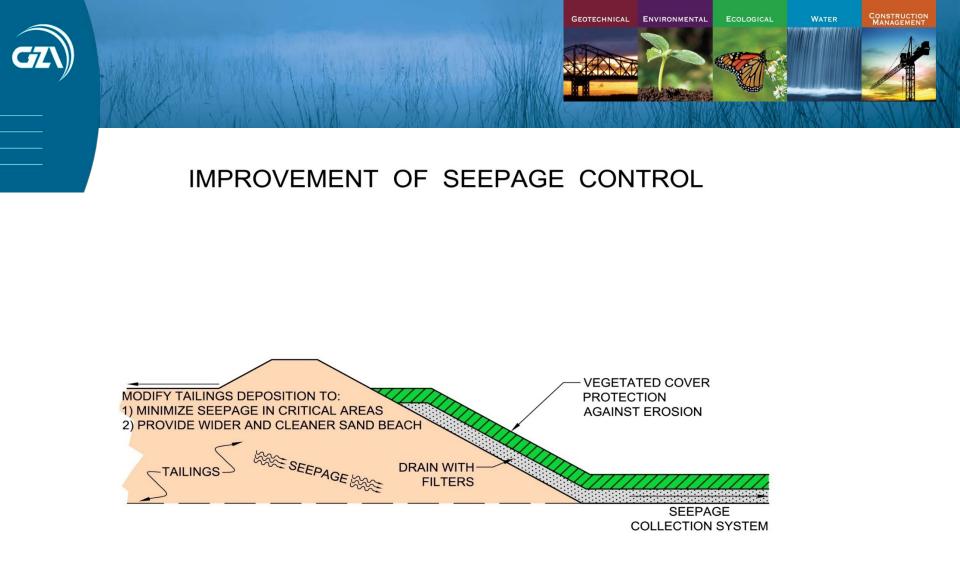
Sand Mine Life Cycle Seminar - May 12, 2017


Classical Rotational Dam Failure

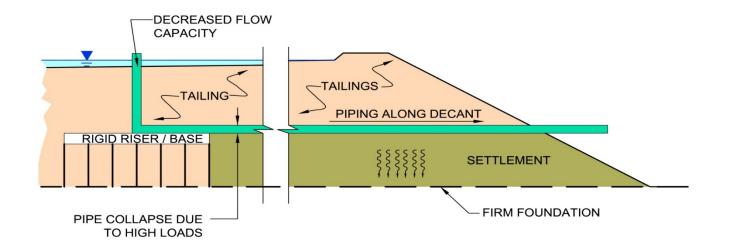
DeKalb County, Georgia Multi-Jurisdictional Hazard Mitigation Plan, February 2011


Classical Rotational Failure With Liquefaction

Merriespruit Tailings Dam Failure 1994, Virginia, South Africa



IMPROVEMENT OF SLOPE INSTABILITY



DECANT PIPE FAILURE MECHANISMS (TYPICAL)

Main Points

- Most Failures of Earth Impoundment Structures Due to Misunderstanding of Geotechnical Issues
- Involve a Knowledgeable Geotechnical Engineer in Design, Construction, Operation and Maintenance of Impoundment Structures
- Address MSHA Regulations
- Increased focus by MSHA due to two recent deaths that MSHA attributed to embankment failure

Proactive By Design. Our Company Commitment John M. Siwula, PE, DGE Associate Principal/Geotechnical Engineer GZA GeoEnvironmental, Inc. 20900 Swenson Drive, Suite 150 Waukesha, WI 53186 262-754-2576 414-412-9286 John.siwula@gza.com

